Ribonukleinsav

Az RNS a ribonukleinsav, egy nukleinsav rövidítése. Ma már sokféle fajtája ismert.

Az RNS fizikailag különbözik a DNS-től: A DNS két egymásra tekeredő szálat tartalmaz, az RNS viszont csak egy szálat. Az RNS a DNS-től eltérő bázisokat is tartalmaz. Ezek a bázisok a következők:

(A) Adenin

(G) Guanin

(C) citozin

(U) Uracil

Az adenin az uracillal, a guanin pedig a citozinnal alkot kötést. Ily módon azt mondjuk, hogy az adenin komplementer az uracilhoz, a guanin pedig komplementer a citozinhoz. Az első három bázis szintén megtalálható a DNS-ben, de az uracil az adenin komplementereként a timint helyettesíti.

Az RNS ribózt is tartalmaz, szemben a DNS-ben található dezoxiribózzal. Ezek a különbségek azt eredményezik, hogy az RNS kémiailag reakcióképesebb, mint a DNS. Ezáltal alkalmasabb molekula a sejtreakciókban való részvételre.

Az RNS a genetikai információ hordozója bizonyos vírusokban, különösen a retrovírusokban, mint például a HIV-vírus. Ez az egyetlen kivétel az általános szabály alól, miszerint a DNS az örökítőanyag.

Fehérjeszintézis RNS-ek

Messenger RNS

Az RNS fő funkciója az aminosav-szekvencia információjának továbbítása a génekből a citoplazmában található riboszómákon összeálló fehérjékhez.

Ezt a hírvivő RNS (mRNS) végzi. Egyetlen DNS-szál a tervrajz az mRNS-hez, amelyet erről a DNS-szálról írnak át. A bázispárok szekvenciáját az RNS-polimeráz nevű enzim írja át a DNS-ből. Ezután az mRNS a sejtmagból a citoplazmában lévő riboszómákhoz kerül, hogy fehérjéket képezzen. Az mRNS a bázispárok szekvenciáját aminosavak szekvenciájává fordítja le, hogy fehérjéket képezzen. Ezt a folyamatot nevezzük transzlációnak.

A DNS különböző okokból nem hagyja el a sejtmagot. A DNS egy nagyon hosszú molekula, és a kromoszómákban fehérjékkel, úgynevezett hisztonokkal van összekötve. Az mRNS ezzel szemben képes mozogni és reagálni a sejt különböző enzimjeivel. Az átírás után az mRNS elhagyja a sejtmagot, és a riboszómákhoz kerül.

Kétféle nem-kódoló RNS segíti a sejtben a fehérjék felépítésének folyamatát. Ezek a transzfer RNS (tRNS) és a riboszomális RNS (rRNS).

tRNS

A transzfer RNS (tRNS) egy rövid, körülbelül 80 nukleotidból álló molekula, amely egy adott aminosavat szállít a riboszómában lévő polipeptidlánchoz. Minden egyes aminosavhoz más-más tRNS tartozik. Mindegyiknek van egy helye, ahová az aminosav kötődik, és egy antikodon, amely megfelel az mRNS-en lévő kodonnak. Például az UUU vagy UUC kodonok a fenilalanin aminosavat kódolják.

rRNS

A riboszomális RNS (rRNS) a riboszómák katalitikus összetevője. Az eukarióta riboszómák négy különböző rRNS-molekulát tartalmaznak: 18S, 5,8S, 28S és 5S rRNS-t. Az rRNS-molekulák közül három a nukleoluszban szintetizálódik, egy pedig máshol. A citoplazmában a riboszómális RNS és a fehérje egy riboszómának nevezett nukleoproteint alkot. A riboszóma megköti az mRNS-t és végzi a fehérjeszintézist. Egyszerre több riboszóma is kapcsolódhat egyetlen mRNS-hez. Az rRNS rendkívül nagy mennyiségben fordul elő, és a tipikus eukarióta citoplazmában található 10 mg/ml RNS 80%-át teszi ki.

snRNS-ek

A kis nukleáris RNS-ek (snRNS) fehérjékkel egyesülve spliceoszómákat alkotnak. A spliceoszómák irányítják az alternatív splicinget. A gének a fehérjéket exonoknak nevezett részekben kódolják. A bitek különböző módon kapcsolódhatnak össze, hogy különböző mRNS-eket hozzanak létre. Így egy génből sok fehérje készülhet. Ez az alternatív splicing folyamata. A fehérje nem kívánt változatait proteázok feldarabolják, és a kémiai biteket újra felhasználják.

Az érett eukarióta mRNS szerkezete. A teljesen feldolgozott mRNS tartalmaz egy 5' sapkát, 5' UTR-t, kódoló régiót, 3' UTR-t és poli(A) farkat. UTR = nem transzlált régióZoom
Az érett eukarióta mRNS szerkezete. A teljesen feldolgozott mRNS tartalmaz egy 5' sapkát, 5' UTR-t, kódoló régiót, 3' UTR-t és poli(A) farkat. UTR = nem transzlált régió

Szabályozó RNS-ek

Számos olyan RNS létezik, amely szabályozza a géneket, azaz szabályozza a gének átíródásának vagy fordításának sebességét.

miRNS

A mikro-RNS-ek (miRNS) úgy hatnak, hogy csatlakoznak egy enzimhez és blokkolják az mRNS-t, vagy felgyorsítják annak lebomlását. Ezt nevezik RNS-interferenciának.

siRNS

A kis interferáló RNS-ek (néha csendesítő RNS-eknek is nevezik őket) beavatkoznak egy adott gén kifejeződésébe. Ezek meglehetősen kicsi (20/25 nukleotidos) kettős szálú molekulák. Felfedezésük az orvosbiológiai kutatás és a gyógyszerfejlesztés fellendülését okozta.

Parazita és egyéb RNS-ek

Retrótranszpozonok

A transzpozonok csak egyike a mobilis genetikai elemeknek. A retrotranszpozonok két lépésben másolják magukat: először DNS-ről RNS-re átírással, majd RNS-ről vissza DNS-re fordított átírással. A DNS-kópia ezután új helyre illeszkedik a genomba. A retrotranszpozonok nagyon hasonlóan viselkednek, mint a retrovírusok, például a HIV.

Vírusgenomok

A vírusgenom, amely általában RNS, átveszi a sejtgépezetet, és új vírus-RNS-t, valamint a vírus fehérjeburkolatot állít elő.

Fág genomok

A fág genomok igen változatosak. A genetikai anyag lehet ssRNS (egyszálú RNS), dsRNS (kétszálú RNS), ssDNS (egyszálú DNS) vagy dsDNS (kétszálú DNS). Hossza 5 és 500 kilo bázispár között lehet, körkörös vagy lineáris elrendezésű. A bakteriofágok mérete általában 20 és 200 nanométer között van.

A fág genomok akár négy gént is kódolhatnak, de akár több száz gént is.

Használja a

Egyes tudósok és orvosok a rák kezelésére és az emberek megbetegedésének megelőzésére használták a hírvivő RNS-t vakcinákban.

Kérdések és válaszok

K: Mit jelent az RNS?


V: Az RNS a ribonukleinsav rövidítése.

K: Miben különbözik fizikailag az RNS a DNS-től?


V: Az RNS csak egy szálból áll, míg a DNS két egymásra tekeredett szálat tartalmaz.

K: Milyen különböző bázisok találhatók az RNS-ben?


V: Az RNS-ben található különböző bázisok az adenin, a guanin, a citozin és az uracil.

K: Milyen kötésmintázat van az RNS-bázisok között?


V: Az adenin az Uracil-lal, a guanin pedig a citozinnal alkot kötést.

K: Miben különbözik kémiailag az RNS a DNS-től?


V: Az RNS dezoxiribóz helyett ribózt tartalmaz, ami miatt kémiailag reakcióképesebb, mint a DNS.

K: Mi az RNS szerepe a sejtreakciókban?


V: Az RNS kémiai reakcióképessége miatt alkalmasabb arra, hogy részt vegyen a sejtreakciókban.

K: Mely vírusok használják az RNS-t a genetikai információ hordozójaként?


V: Bizonyos vírusok, különösen a retrovírusok, mint például a HIV-vírus, RNS-t használnak a genetikai információ hordozójaként.

AlegsaOnline.com - 2020 / 2023 - License CC3