Aranymetszés (φ) – definíció, értéke (1,618...) és tulajdonságai

Egy a szám és egy másik, kisebb b szám esetén a két szám arányát úgy kapjuk meg, hogy elosztjuk őket: az arány a/b. Egy másik arányt úgy képezünk, hogy a két számot összeadjuk (a+b), és az összegét elosztjuk a nagyobbik (a) számmal; ez az arány (a+b)/a. Ha a két arány egyenlő, az arányt aranymetszésnek nevezzük. A φ görög betű \displaystyle \varphi} {\displaystyle \varphi } (phi) általában az aranymetszés arányát jelöli.

Algebrai meghatározás

Legyen az arány értéke φ, azaz

φ = (a/b) = (a+b)/a.

Ha φ = (a+b)/a és φ = a/b, akkor φ kielégíti az egyenletet

φ = (φ + 1) / φ

Ebből szorzással kapjuk a másodfokú egyenletet φ² = φ + 1, vagyis

φ² − φ − 1 = 0.

Ennek a másodfokú egyenletnek a pozitív gyöke adja az aranymetszés értékét:

φ = 1 + 5 2 {\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}}} {\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}}

Az 5 {\displaystyle {\sqrt {5}}}{\displaystyle {\sqrt {5}}} a 5 négyzetgyöke: olyan szám, amely önmagával megszorozva 5-öt ad ({\displaystyle {\sqrt {5}}\times {\sqrt {5}}=5}{\displaystyle {\sqrt {5}}\times {\sqrt {5}}=5}).

Értéke és típus

Az aranymetszés pontos értéke tehát

  • φ = (1 + √5) / 2 ≈ 1,6180339887498948…

Az aranymetszés irracionális szám, azaz nem írható fel két egész hányadosaként; tizedes alakja végtelen és nem periodikus: 1,6180339887…

Fontos algebrai tulajdonságok

  • φ² = φ + 1.
  • φ − 1 = 1/φ — gyakran így írják fel: φ = 1 + 1/φ.
  • Reciprokája: 1/φ = φ − 1 ≈ 0,6180339887…
  • A negatív konjugált gyök: ψ = (1 − √5)/2 ≈ −0,6180339887…, amely a φ-hez tartozó másik gyök.
  • Minimális polinomja: x² − x − 1, vagyis φ quadratic irracionális szám.

Fibonacci-sor és folytatható tört

  • A Fibonacci-sorozat arányai: a F_{n+1}/F_n hányadosok a sorozat növekedésével a φ értékéhez tartanak; az arány határértéke φ.
  • Kontinuitív törtként: φ = [1;1,1,1,…] — végtelen 1-esekből álló egyszerű lánctört.
  • Összefüggő gyök alakok: φ = 1 + 1/(1 + 1/(1 + …)) és φ = √(1 + √(1 + √(1 + …))).

Geometriai megjelenések és alkalmazások

  • Aranytéglalap: aránya, oldalhosszúságok aránya φ — sok művész és építész hivatkozik erre az arányra esztétikai okokból.
  • Pentagon és pentagram: a szabályos ötszög belső arányai, a pentagram szárainak arányai a φ-hez kötődnek.
  • Természet: levelek elrendezése (filotaxis), csigaházak spiráljai és egyes növényi mintázatok közelítenek a φ-hez kapcsolódó arányokat vagy Fibonacci-számokat.
  • Művészet és dizájn: kompozíciós arányok, aranyló metszésként emlegetett elrendezések; fontos azonban megjegyezni, hogy a "szép" arány szubjektív, és nem minden esztétikai jelenség alapja kizárólag φ.

Egyéb érdekes kapcsolatok

  • Trigonometria: cos 36° = φ/2, ebből következik, hogy φ = 2 cos 36°.
  • Poten­ciák és záróformák: hatványai felírhatók Fibonacci-számokkal: φ^n = F_n φ + F_{n-1}, ahol F_n a Fibonacci-sorozat n-edik tagja.
  • Kompozíciós tulajdonságok: φ + 1 = φ² és 1 − φ = −1/φ, ezek gyakran használhatók egyszerű alakra hozáshoz.

Összefoglalás

Az aranymetszés egy egyszerű, de gazdag matematikai konstans: algebrailag a φ² − φ − 1 = 0 másodfokú egyenlet pozitív gyöke, értéke (1 + √5)/2 ≈ 1,6180339887…; irracionális, lánctört- és fibonacci-kapcsolatai miatt sok területen felbukkan a matematikában, geometriában, természetben és művészetben.

Arany téglalap

Ha egy téglalap hossza osztva a szélességével egyenlő az aranymetszéssel, akkor a téglalap "aranytéglalap". Ha egy arany téglalap egyik végéből levágunk egy négyzetet, akkor a másik vége egy új arany téglalap lesz. A képen a nagy téglalap (kék és rózsaszín együtt) egy arany téglalap, mert a / b = φ {\displaystyle a/b=\varphi } {\displaystyle a/b=\varphi }. A kék rész (B) egy négyzet. A rózsaszín rész önmagában (A) egy másik arany téglalap, mert b / ( a - b ) = φ {\displaystyle b/(a-b)=\varphi } {\displaystyle b/(a-b)=\varphi }. A nagy téglalap és a rózsaszín téglalap alakja megegyezik, de a rózsaszín téglalap kisebb és elfordított.

Zoom

A nagy téglalap BA egy arany téglalap, azaz a b:a arány 1: φ {\displaystyle \varphi } {\displaystyle \varphi }. Bármelyik ilyen téglalap esetében, és csak az ilyen arányú téglalapok esetében, ha eltávolítjuk a B négyzetet, akkor az, ami megmarad, A, egy másik arany téglalap; vagyis ugyanazokkal az arányokkal, mint az eredeti téglalap.

Fibonacci-számok

A Fibonacci-számok számok listája. Az ember a lista következő számát úgy találja meg, ha az utolsó két számot összeadja. Ha valaki elosztja a listán szereplő számot az előtte lévővel, akkor ez az arány egyre közelebb kerül az aranymetszéshez.

Fibonacci-szám

osztva az előzővel

arány

1

1

1/1

= 1.0000

2

2/1

= 2.0000

3

3/2

= 1.5000

5

5/3

= 1.6667

8

8/5

= 1.6000

13

13/8

= 1.6250

21

21/13

= 1.6154...

34

34/21

= 1.6190...

55

55/34

= 1.6177...

89

89/55

= 1.6182...

...

...

...

φ \displaystyle \varphi } {\displaystyle \varphi }

= 1.6180...



Aranyarány a természetben

A természetben az aranymetszést gyakran használják a levelek vagy virágok elrendezésénél. Ezek a körülbelül 137,5 fokos aranyszöget használják. Az ebben a szögben elrendezett levelek vagy virágok a legjobban kihasználják a napfényt.

Az aranyszög használata optimálisan kihasználja a napfényt. Ez egy nézet a tetejéről.Zoom
Az aranyszög használata optimálisan kihasználja a napfényt. Ez egy nézet a tetejéről.

A közönséges borostyán levele, amely az aranymetszést mutatjaZoom
A közönséges borostyán levele, amely az aranymetszést mutatja

Kérdések és válaszok

K: Mi két szám aránya?


V: Két szám arányát úgy találjuk meg, hogy elosztjuk őket, tehát az arány a/b lenne.

K: Hogyan lehet egy másik arányt megtalálni?


V: Egy másik arányt úgy találhatunk, hogy a két számot összeadjuk, majd ezt az összeget elosztjuk a nagyobb számmal, az a-val. Ez az új arány (a+b)/a lenne.

K: Hogyan nevezzük azt, amikor ez a két arány egyenlő egymással?


V: Ha ez a két arány egyenlő egymással, akkor azt aranymetszésnek nevezzük. Általában görög betűvel צ vagy phi betűvel ábrázolják.

K: Ha b = 1 és a/b = צ , mit jelent ez az a-ra nézve?


V: Ha b = 1 és a/b = צ , akkor ez azt jelenti, hogy a = צ is.

K: Hogyan lehet ezt a számot leírni?


V: Ezt a számot így lehet leírni: צ = 1 + 5 / 2 = 1,618...

K: Mit jelent, ha kivonunk belőle 1-et vagy elosztjuk 1-gyel?


V: Ha kivonsz belőle 1-et, vagy osztasz vele 1-et, ugyanazt a számot kapod vissza - vagyis mindkettő megegyezik az aranymetszéssel.

K: Az aranymetszés irracionális szám?


V: Igen, az aranymetszés irracionális szám, ami azt jelenti, hogy ha valaki megpróbálja kiírni, soha nem lesz vége, és nem lesz minta - csak valami olyasmivel kezdődik, hogy "1,6180339887...".

AlegsaOnline.com - 2020 / 2025 - License CC3