Konstans függvény
A matematikában a konstans függvény olyan függvény, amelynek kimeneti értéke minden bemeneti értékre azonos. Például az y ( x ) = 4 {\displaystyle y(x)=4} függvény konstans függvény, mert az y ( x ) {\displaystyle y(x)} értéke
4, függetlenül az x {\displaystyle x}
bemeneti értéktől (lásd a képet).


Állandó függvény y=4
Alapvető tulajdonságok
Formálisan egy konstans f(x):R→R függvény f ( x ) = c {\displaystyle f(x)=c} formájú. Általában y ( x ) = c {\displaystyle y(x)=c}
vagy egyszerűen y = c {\displaystyle y=c}
írjuk.
- Az y=c függvénynek 2 változója van: x és у, valamint 1 konstans c. (A függvénynek ebben a formájában nem látjuk x-et, de az ott van.)
- A c konstans egy valós szám. Mielőtt egy lineáris függvénnyel dolgoznánk, c-t egy valós számmal helyettesítjük.
- Az y=c tartománya vagy bemenete R. Tehát bármely valós x szám bemenete lehet. A kimenet azonban mindig a c érték.
- Az y=c tartománya szintén R. Mivel azonban a kimenet mindig c értéke, a kodomain csak c.
Példa: Az y ( x ) = 4 {\displaystyle y(x)=4} vagy egyszerűen y = 4 {\displaystyle y=4} az
a konkrét konstans függvény, ahol a kimeneti érték c = 4 {\displaystyle c=4}
. A tartomány az összes valós szám ℝ. A kodomain csak {4}. Nevezetesen: y(0)=4, y(-2.7)=4, y(π)=4,..... Mindegy, hogy x milyen értéket adunk meg, a kimenet "4" lesz.
- Az y = c állandó függvény grafikonja {\displaystyle y=c}
egy vízszintes egyenes a síkban, amely áthalad a ( 0 , c ) ponton {\displaystyle (0,c)}
.
- Ha c≠0, akkor az y=c konstans függvény egy nulla fokú, egyváltozós x polinom.
- A függvény y metszéspontja a (0,c) pont.
- Ennek a függvénynek nincs x-interceptusa. Vagyis nincs gyökere vagy nullája. Soha nem keresztezi az x-tengelyt.
- Ha c=0, akkor y=0. Ez a zérus polinom vagy az identikusan nulla függvény. Minden valós x számnak van gyöke. Az y=0 grafikonja az x-tengely a síkban.
- Az állandó függvény páros függvény, így az y-tengely minden állandó függvény szimmetriatengelye.
Egy konstans függvény deriváltja
Abban az összefüggésben, ahol definiálták, egy függvény deriváltja a függvény (kimeneti) értékek változásának mértékét méri a bemeneti értékek változásához képest. Egy konstans függvény nem változik, így deriváltja 0. Ezt gyakran írják: ( c ) ′ = 0 {\displaystyle (c)'=0}
Példa: y ( x ) = - 2 {\displaystyle y(x)=-{\sqrt {2}}} egy konstans függvény. Az y deriváltja az y ′ ( x ) = ( - 2 ) ′ = 0 {\displaystyle y'(x)=(-{\sqrt {2}})'=0}
A fordítottja (ellenkezője) is igaz. Azaz, ha egy függvény deriváltja mindenhol nulla, akkor a függvény konstans függvény.
Matematikailag ezt a két állítást írjuk le:
y ( x ) = c ⇔ y ′ ( x ) = 0 , ∀ x ∈ R {\displaystyle y(x)=c\,\,\,\,\,\,\Leftrightarrow \,\,\,\,y'(x)=0\,,\,\,\,\,\forall x\ in \mathbb {R} }
Generalizáció
Egy f : A → B függvény konstans függvény, ha f(a) = f(b) minden a és b esetén A-ban.
Példák
Valós példa: Egy bolt, ahol minden árucikket 1 euróért árulnak. A függvény tartománya a boltban lévő tételek. A társtartomány 1 euró.
Példa: Legyen f : A → B, ahol A={X,Y,Z,W} és B={1,2,3} és f(a)=3 minden a∈A esetén. Ekkor f egy konstans függvény.
Példa: z(x,y)=2 az A=ℝ² és B=ℝ közötti konstans függvény, ahol minden (x,y)∈ℝ² pont a z=2 értékre van leképezve. Ennek az állandó függvénynek a grafikonja a 3 dimenziós térben az a vízszintes (az x0y síkkal párhuzamos) sík, amely a (0,0,2) ponton halad át.
Példa: A ρ(φ)=2,5 poláris függvény az az állandó függvény, amely minden φ szöget ρ=2,5 sugárra vetít. Ennek a függvénynek a grafikonja a 2,5 sugarú kör a síkban.
|
|
|
Egyéb tulajdonságok
Az állandó függvényeknek más tulajdonságai is vannak. Lásd Constant function az angol Wikipédián
Kapcsolódó oldalak
Kérdések és válaszok
K: Mi az a konstans funkció?
V: Az állandó függvény olyan függvény, amelynek kimeneti értéke minden bemeneti értékre ugyanaz marad.
K: Tudna példát mondani egy konstans függvényre?
V: Igen, egy konstans függvényre példa az y(x) = 4, ahol az y(x) értéke mindig 4, függetlenül az x bemeneti értéktől.
K: Honnan tudod megállapítani, hogy egy függvény konstans függvény-e?
V: Azt, hogy egy függvény konstans függvény-e, onnan tudod megállapítani, hogy a kimeneti értéke minden bemeneti érték esetén ugyanaz marad-e.
K: Mit jelent, amikor azt mondjuk az állandó függvényekkel kapcsolatban, hogy "y(x)=4"?
V: Amikor azt mondjuk, hogy "y(x)=4", az azt jelenti, hogy az y(x) kimeneti értéke mindig 4 lesz, függetlenül attól, hogy az x bemeneti érték milyen lehet.
K: Lehet valahogyan szemléltetni, hogyan néz ki egy konstans függvény?
V: Igen, az egyik módja annak, hogy szemléltessük, hogyan néz ki egy konstans függvény, egy kép vagy grafikon.
K: Változik-e a kimenet a bemenettől függően az állandó függvényeknél?
V: Nem, a konstans függvényekben a kimenet nem változik a bemenettől függően.