Szillogizmus
A szillogizmus egy következtetés. Egyfajta logikai érvelés, amelyben egy állítást (a következtetést) két vagy több másikból (a premisszákból) következtetünk. A gondolat Arisztotelész találmánya.
A Prior Analitikában Arisztotelész a szillogizmust úgy határozza meg, mint "olyan diskurzust, amelyben bizonyos dolgok feltételezése után szükségszerűen következik a feltételezett dolgoktól eltérő dolog, mert ezek a dolgok így vannak". (24b18-20)
Minden mondatban a "lenni" ige valamelyik formájának kell szerepelnie. A kategorikus szillogizmus olyan, mint egy kis gépezet, amely három részből épül fel: a fő premisszából, a mellékpremisszából és a konklúzióból. E részek mindegyike egy-egy tétel, és az első kettőből dől el a harmadik rész "igazságértéke".
Példák
Fő előfeltevés: Minden ember halandó.
Kisebb előfeltevés: Minden görög férfi.
Következtetés: Minden görög halandó.
A három különböző kifejezés mindegyike egy-egy kategóriát képvisel. A fenti példában az "emberek", a "halandó" és a "görögök". A "halandó" a fő kifejezés; a "görögök" a mellék kifejezés. A premisszáknak van egy közös terminusuk is, amelyet középső terminusnak nevezünk; ebben a példában az "ember". Mindkét premissza univerzális, akárcsak a konklúzió.
Fő premissza: Minden halandó meghal.
Kisebb előfeltevés: Egyes emberek halandók.
Következtetés: Néhány ember meghal.
Itt a fő kifejezés a "meghal", a mellék kifejezés az "emberek", a középső kifejezés pedig a "halandók". A fő premissza egyetemes; a mellék premissza és a következtetés partikuláris. Arisztotelész különböző szillogizmusokat tanulmányozott, és az érvényes szillogizmusokat olyan szillogizmusokként azonosította, amelyeknek a konklúziója igaz, ha mindkét premissza igaz. A fenti példák érvényes szillogizmusok.
A soritész olyan érvelési forma, amelyben a hiányos szillogizmusok sorozata úgy van elrendezve, hogy az egyes premisszák predikátuma a következő premissza alanyát képezi, amíg az első premissza alanya a konklúzióban az utolsó predikátumával nem egyesül. Ha például azt állítjuk, hogy egy adott számú homokszem nem alkot halmot, és hogy egy további homokszem sem, akkor a következtetés, miszerint egy további homokmennyiség sem alkot halmot, egy sorites érvelés.
Logic today
A szillogizmust Gottlob Frege 1879-ben megjelent munkája után váltotta fel az elsőrendű logika. Ez a logika alkalmas a matematika, a számítógépek, a nyelvészet és más tantárgyak számára, mivel mondatok helyett számokat (kvantifikált változókat) használ.
Kérdések és válaszok
K: Mi az a szillogizmus?
V: A szillogizmus egyfajta logikai érvelés, amelyben két vagy több premisszából következtetést vonunk le.
K: Ki találta ki a szillogizmus gondolatát?
V: Arisztotelész találta fel a szillogizmus gondolatát.
K: Hogyan definiálja Arisztotelész a szillogizmust?
V: A Prior Analitikában Arisztotelész a szillogizmust úgy definiálja, mint "olyan diskurzust, amelyben bizonyos dolgok feltételezése után szükségképpen következik a feltételezett dolgoktól eltérő dolog, mert ezek a dolgok így vannak".
K: Hány premissza szükséges egy szillogizmusban?
V: Egy szillogizmushoz két vagy több premissza szükséges.
K: Mit kell tartalmaznia egy szillogizmus minden egyes tételének?
V: Minden egyes tételnek tartalmaznia kell a "lenni" ige valamelyik formáját.
K: Mi az a kategorikus szillogizmus?
V: A kategorikus szillogizmus olyan, mint egy kis gépezet, amely három részből épül fel: a fő premisszából, a mellékpremisszából és a konklúzióból.
K: Hogyan dől el a kategorikus szillogizmus harmadik részének "igazságértéke"?
V: A kategorikus szillogizmus harmadik részének "igazságértékét" az első két premissza alapján határozzuk meg.