Teljes indukció

A matematikai indukció a matematikai igazság bizonyításának egy speciális módja. Ezzel bizonyíthatjuk, hogy valami igaz az összes természetes számra (az összes pozitív egész számra). Az elképzelés az, hogy

  • Valami igaz az első esetre
  • Ugyanez mindig igaz a következő esetre is.

majd

  • Ugyanez igaz minden esetben.

A matematika óvatos nyelvén:

  • Állapítsa meg, hogy a bizonyítás n {\displaystyle n}n fölött indukcióval történik. ( n {\displaystyle n}n az indukciós változó.)
  • Mutassuk meg, hogy az állítás igaz, ha n {\displaystyle n}n 1.
  • Tegyük fel, hogy az állítás igaz bármely n természetes számra {\displaystyle n}n . (Ezt nevezzük indukciós lépésnek.)
    • Mutassuk meg, hogy az állítás igaz a következő számra, n + 1 {\displaystyle n+1}{\displaystyle n+1} .

Mert igaz az 1-re, akkor igaz az 1+1-re (=2, az indukciós lépés alapján), akkor igaz a 2+1-re (=3), akkor igaz a 3+1-re (=4), és így tovább.

Példa az indukciós bizonyításra:

Bizonyítsuk be, hogy minden n természetes számra:

1 + 2 + 3 + . . . . + ( n - 1 ) + n = 1 2 n ( n + 1 ) {\displaystyle 1+2+3+....+(n-1)+n={\tfrac {1}{2}}}n(n+1)} {\displaystyle 1+2+3+....+(n-1)+n={\tfrac {1}{2}}n(n+1)}

Bizonyíték:

Először is, az állítás felírható: minden n természetes szám esetén

2 ∑ k = 1 n k = n ( n + 1 ) {\displaystyle 2\sum _{k=1}^{n}k=n(n+1)} {\displaystyle 2\sum _{k=1}^{n}k=n(n+1)}

Indukcióval n-re,

Először is, n=1 esetén:

2 ∑ k = 1 1 k = 2 ( 1 ) = 1 ( 1 + 1 ) {\displaystyle 2\sum _{k=1}^{1}k=2(1)=1(1+1)} {\displaystyle 2\sum _{k=1}^{1}k=2(1)=1(1+1)},

tehát ez igaz.

Ezután tegyük fel, hogy bizonyos n=n0 esetén az állítás igaz. Vagyis:

2 ∑ k = 1 n 0 k = n 0 ( n 0 + 1 ) {\displaystyle 2\sum _{k=1}^{n_{0}}}k=n_{0}(n_{0}+1)} {\displaystyle 2\sum _{k=1}^{n_{0}}k=n_{0}(n_{0}+1)}

Ezután n=n0+1:

2 ∑ k = 1 n 0 + 1 k {\displaystyle 2\sum _{k=1}^{{n_{0}}+1}k}k} {\displaystyle 2\sum _{k=1}^{{n_{0}}+1}k}

átírható

2 ( ∑ k = 1 n 0 k + ( n 0 + 1 ) ) {\displaystyle 2\left(\sum _{k=1}^{n_{0}}k+(n_{0}+1)\right)} {\displaystyle 2\left(\sum _{k=1}^{n_{0}}k+(n_{0}+1)\right)}

Mivel 2 ∑ k = 1 n 0 k = n 0 ( n 0 + 1 ) , {\displaystyle 2\sum _{k=1}^{n_{0}}}k=n_{0}(n_{0}+1),} {\displaystyle 2\sum _{k=1}^{n_{0}}k=n_{0}(n_{0}+1),}

2 ∑ k = 1 n 0 + 1 k = n 0 ( n 0 + 1 ) + 2 ( n 0 + 1 ) = ( n 0 + 1 ) ( n 0 + 2 ) {\displaystyle 2\sum _{k=1}^{n_{0}+1}k=n_{0}(n_{0}+1)+2(n_{0}+1)=(n_{0}+1)(n_{0}+2)} {\displaystyle 2\sum _{k=1}^{n_{0}+1}k=n_{0}(n_{0}+1)+2(n_{0}+1)=(n_{0}+1)(n_{0}+2)}

A bizonyítás tehát helyes.

Hasonló bizonyítékok

A matematikai indukciót gyakran 0 (és nem 1) kezdőértékkel adják meg. Valójában ugyanolyan jól működik különböző kezdőértékekkel is. Íme egy példa, amikor a kiindulási érték 3. Egy n {\displaystyle n}n oldalú sokszög belső szögeinek összege ( n - 2 ) 180 {\displaystyle (n-2)180}{\displaystyle (n-2)180} fok.

A kiindulási érték 3, és a háromszög belső szöge ( 3 - 2 ) 180 {\displaystyle (3-2)180}{\displaystyle (3-2)180} fok. Tegyük fel, hogy egy n {\displaystyle n} noldalú sokszög belső szöge ( n - 2 ) 180 {\displaystyle (n-2)180}{\displaystyle (n-2)180} fok. Adjunk hozzá egy háromszöget, amely az ábrát n + 1 {\displaystyle n+1} {\displaystyle n+1}oldalú sokszöggé, és ez 180 fokkal növeli a szögek számát ( n - 2 ) 180 + 180 = ( n + 1 - 2 ) 180 {\displaystyle (n-2)180+180=(n+1-2)180}{\displaystyle (n-2)180+180=(n+1-2)180} fokkal. Bizonyított.

Nagyon sok olyan matematikai objektum van, amelyre a matematikai indukcióval történő bizonyítás működik. A szakkifejezés a jól rendezett halmaz.

Induktív meghatározás

Ugyanez a gondolat működhet a meghatározás és a bizonyítás terén is.

Határozza meg az n {\displaystyle n} nth fokú unokatestvért:

  • Az 1 {\displaystyle 1}{\displaystyle 1} elsőfokú unokatestvér a szülő testvérének gyermeke.
  • Az n + 1 {\displaystyle n+1}{\displaystyle n+1} elsőfokú unokatestvér a szülő n {\displaystyle n}n harmadikfokú unokatestvérének gyermeke.

A természetes számok aritmetikájához létezik egy axiómakészlet, amely a matematikai indukción alapul. Ezt "Peano axiómáinak" nevezik. A határozatlan szimbólumok a | és az =. Az axiómák a következők

  • | egy természetes szám
  • Ha n {\displaystyle n}n egy természetes szám, akkor n | {\displaystyle n|}{\displaystyle n|} egy természetes szám.
  • Ha n | = m | {\displaystyle n|=m|}{\displaystyle n|=m|} akkor n = m {\displaystyle n=m} {\displaystyle n=m}

Ezután matematikai indukcióval meghatározhatjuk az összeadás és a szorzás stb. műveleteit. Például:

  • m + | = m | {\displaystyle m+|=m|} {\displaystyle m+|=m|}
  • m + n | = ( m + n ) | {\displaystyle m+n|=(m+n)|} {\displaystyle m+n|=(m+n)|}

Kérdések és válaszok

K: Mi az a matematikai indukció?


V: A matematikai indukció a matematikai igazság bizonyításának egy speciális módja, amellyel bebizonyítható, hogy egy bizonyos ponttól kezdve minden természetes számra vagy pozitív számra igaz valami.

K: Hogyan zajlik az indukciós bizonyítás?


V: Az indukciós bizonyítás jellemzően úgy megy végbe, hogy kijelentjük, hogy a bizonyítás n számra fog történni, megmutatjuk, hogy az állítás igaz, amikor n 1, feltételezzük, hogy az állítás igaz bármely n természetes számra, majd megmutatjuk, hogy igaz a következő számra (n+1).

K: Mit jelent az induktív lépésben feltételezni valamit?


V: Induktív lépésben feltételezni valamit azt jelenti, hogy bizonyíték vagy bizonyítás nélkül igaznak fogadjuk el. Ez kiindulópontként szolgál a további vizsgálatokhoz.

K: Milyen számokat használnak a matematikai indukcióban?


V: A matematikai indukció egy bizonyos ponttól kezdve jellemzően természetes számokat vagy pozitív számokat használ.

K: Hogyan lehet megmutatni, hogy valami igaz a következő számra (n+1)?


V: Ahhoz, hogy megmutassuk, hogy valami igaz a következő számra (n+1), először be kell bizonyítanunk, hogy igaz, amikor n=1, majd az induktív lépésből származó feltételezésünket felhasználva meg kell mutatnunk, hogy az n+1-re is igaz.

AlegsaOnline.com - 2020 / 2023 - License CC3